Bilateral postsynaptic actions of pyramidal tract and reticulospinal neurons on feline erector spinae motoneurons.

نویسندگان

  • Mary Pauline Galea
  • Ingela Hammar
  • Elin Nilsson
  • Elzbieta Jankowska
چکیده

Trunk muscles are important for postural adjustments associated with voluntary movements but little has been done to analyze mechanisms of supraspinal control of these muscles at a cellular level. The present study therefore aimed to investigate the input from pyramidal tract (PT) neurons to motoneurons of the musculus longissimus lumborum of the erector spinae and to analyze to what extent it is relayed by reticulospinal (RS) neurons. Intracellular records from motoneurons were used to evaluate effects of electrical stimulation of medullary pyramids and of axons of RS neurons descending in the medial longitudinal fasciculus (MLF). The results revealed that similar synaptic actions were evoked from the ipsilateral and contralateral PTs, including disynaptic and trisynaptic EPSPs and trisynaptic IPSPs. Stimulation of the MLF-evoked monosynaptic and disynaptic EPSPs and disynaptic or trisynaptic IPSPs in the same motoneurons. All short-latency PSPs of PT origin were abolished by transection of the MLF, while they remained after transection of PT fibers at a spinal level. Hence, RS neurons might serve as the main relay neurons of the most direct PT actions on musculus (m.) longissimus. However, longer-latency IPSPs remaining after MLF or PT spinal lesions and after ipsilateral or contralateral hemisection of spinal cord indicate that PT actions are also mediated by ipsilaterally and/or contralaterally located spinal interneurons. The bilateral effects of PT stimulation thereby provide an explanation why trunk movements after unilateral injuries of PT neurons (e.g., stroke) are impaired to a lesser degree than movements of the extremities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ipsilateral actions of feline corticospinal tract neurons on limb motoneurons.

Contralateral pyramidal tract (PT) neurons arising in the primary motor cortex are the major route through which volitional limb movements are controlled. However, the contralateral hemiparesis that follows PT neuron injury on one side may be counteracted by ipsilateral of actions of PT neurons from the undamaged side. To investigate the spinal relays through which PT neurons may influence ipsi...

متن کامل

How to enhance ipsilateral actions of pyramidal tract neurons.

We have shown previously that ipsilateral pyramidal tract (PT) neurons facilitate the actions of reticulospinal neurons on feline motoneurons (Edgley et al., 2004), which indicates that they might assist the recovery of motor functions after injuries of contralateral corticospinal neurons. Nevertheless, stimulation of ipsilateral PT fibers alone only rarely evoked any synaptic actions in motone...

متن کامل

Facilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation.

Ipsilateral actions of pyramidal tract (PT) neurons are weak but may, if strengthened, compensate for deficient crossed PT actions following brain damage. The purpose of the present study was to examine whether transcranial direct current stimulation (tDCS) can strengthen ipsilateral PT (iPT) actions; in particular, those relayed by reticulospinal neurons co-excited by axon collaterals of fibre...

متن کامل

Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons.

Pathways through which reticulospinal neurons can influence contralateral limb movements were investigated by recording from motoneurons innervating hindlimb muscles. Reticulospinal tract fibers were stimulated within the brainstem or in the lateral funiculus of the thoracic spinal cord contralateral to the motoneurons. Effects evoked by ipsilaterally descending reticulospinal tract fibers were...

متن کامل

Coupling between feline cerebellum (fastigial neurons) and motoneurons innervating hindlimb muscles.

The aims of the study were twofold: (1) to verify the hypothesis that neurons in the fastigial nucleus excite and inhibit hindlimb alpha-motoneurons and (2) to determine both the supraspinal and spinal relays of these actions. Axons of fastigial neurons were stimulated at the level of their decussation in the cerebellum, within the hook bundle of Russell, in deeply anesthetized cats with only t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2010